Papers
MADE: Exploration via Maximizing Deviation from Explored Regions
Zhang, Tianjun, Rashidinejad, Paria, Jiao, Jiantao, Tian, Yuandong, Gonzalez, Joseph E., Russell, Stuart
In online reinforcement learning (RL), efficient exploration remains particularly challenging in high-dimensional environments with sparse rewards. In low-dimensional environments, where tabular parameterization is possible, count-based upper confidence bound (UCB) exploration methods achieve minimax near-optimal rates. However, it remains unclear how to efficiently implement UCB in realistic RL tasks that involve non-linear function approximation. To address this, we propose a new exploration approach via maximizing the deviation of the occupancy of the next policy from the explored regions. We add this term as an adaptive regularizer to the standard RL objective to balance exploration vs. exploitation. We pair the new objective with a provably convergent algorithm, giving rise to a new intrinsic reward that adjusts existing bonuses. The proposed intrinsic reward is easy to implement and combine with other existing RL algorithms to conduct exploration. As a proof of concept, we evaluate the new intrinsic reward on tabular examples across a variety of model-based and model-free algorithms, showing improvements over count-only exploration strategies. When tested on navigation and locomotion tasks from MiniGrid and DeepMind Control Suite benchmarks, our approach significantly improves sample efficiency over state-of-the-art methods.
A Tale of Two Metrics: Simultaneous Bounds on Competitiveness and Regret
Lachlan Andrew, Siddharth Barman, Katrina Ligett, Minghong Lin, Adam Meyerson, Alan Roytman, Adam Wierman
We consider algorithms for “smoothed online convex optimization” problems, a variant of the class of online convex optimization problems that is strongly related to metrical task systems. Prior literature on these problems has focused on two performance metrics: regret and the competitive ratio. There exist known algorithms with sublinear regret and known algorithms with constant competitive ratios; however, no known algorithm achieves both simultaneously. We show that this is due to a fundamental incompatibility between these two metrics - no algorithm (deterministic or randomized) can achieve sublinear regret and a constant competitive ratio, even in the case when the objective functions are linear. However, we also exhibit an algorithm that, for the important special case of one dimensional decision spaces, provides sublinear regret while maintaining a competitive ratio that grows arbitrarily slowly.
Gradually Updated Neural Networks for Large-Scale Image Recognition
Siyuan Qiao, Zhishuai Zhang, Wei Shen, Bo Wang, Alan Yuille
Depth is one of the keys that make neural networks succeed in the task of large-scale image recognition. The state-of-the-art network architectures usually increase the depths by cascading convolutional layers or building blocks. In this paper, we present an alternative method to increase the depth. Our method is by introducing computation orderings to the channels within convolutional layers or blocks, based on which we gradually compute the outputs in a channel-wise manner. The added orderings not only increase the depths and the learning capacities of the networks without any additional computation costs, but also eliminate the overlap singularities so that the networks are able to converge faster and perform better. Experiments show that the networks based on our method achieve the state-of-the-art performances on CIFAR and ImageNet datasets.
A Mathematical Model For Optimal Decisions In A Representative Democracy
Magdon-Ismail, Malik, Xia, Lirong
Direct democracy, where each voter casts one vote, fails when the average voter competence falls below 50%. This happens in noisy settings when voters have limited information. Representative democracy, where voters choose representatives to vote, can be an elixir in both these situations. We introduce a mathematical model for studying representative democracy, in particular understanding the parameters of a representative democracy that gives maximum decision making capability. Our main result states that under general and natural conditions, for fixed voting cost, the optimal number of representatives is linear; for polynomial cost, the optimal number of representatives is logarithmic.
Better Best of Both Worlds Bounds for Bandits with Switching Costs
Amir, Idan, Azov, Guy, Koren, Tomer, Livni, Roi
We study best-of-both-worlds algorithms for bandits with switching cost, recently addressed by Rouyer et al., 2021. We introduce a surprisingly simple and effective algorithm that simultaneously achieves minimax optimal regret bound (up to logarithmic factors) of in the oblivious adversarial setting and a bound of in the stochastically-constrained regime, both with (unit) switching costs, where is the gap between the arms. In the stochastically constrained case, our bound improves over previous results due to Rouyer et al., 2021, that achieved regret of . We accompany our results with a lower bound showing that, in general, switching cost regret is unavoidable in the stochastically-constrained case for algorithms with worst-case switching cost regret.
Adjust Pearson's to Measure Arbitrary Monotone Dependence
Ai, Xinbo
Pearson's , the most widely-used correlation coefficient, is traditionally regarded as exclusively capturing linear dependence, leading to its discouragement in contexts involving nonlinear relationships. However, recent research challenges this notion, suggesting that Pearson's should not be ruled out a priori for measuring nonlinear monotone relationships. Pearson's is essentially a scaled covariance, rooted in the renowned Cauchy-Schwarz Inequality. Our findings reveal that different scaling bounds yield coefficients with different capture ranges, and interestingly, tighter bounds actually expand these ranges. We derive a tighter inequality than Cauchy-Schwarz Inequality, leverage it to refine Pearson's , and propose a new correlation coefficient, i.e., rearrangement correlation. This coefficient is able to capture arbitrary monotone relationships, both linear and nonlinear ones. It reverts to Pearson's in linear scenarios. Simulation experiments and real-life investigations show that the rearrangement correlation is more accurate in measuring nonlinear monotone dependence than the three classical correlation coefficients, and other recently proposed dependence measures.
Efficient Dimensionality Reduction for Canonical Correlation Analysis
Haim Avron, Christos Boutsidis, Sivan Toledo, Anastasios Zouzias
We present a fast algorithm for approximate Canonical Correlation Analysis (CCA). Given a pair of tall-and-thin matrices, the proposed algorithm first employs a randomized dimensionality reduction transform to reduce the size of the input matrices, and then applies any standard CCA algorithm to the new pair of matrices. The algorithm computes an approximate CCA to the original pair of matrices with provable guarantees, while requiring asymptotically less operations than the state-of-the-art exact algorithms.
Ratio Trace Formulation of Wasserstein Discriminant Analysis
Liu, Hexuan, Cai, Yunfeng, Chen, You-Lin, Li, Ping
We reformulate the Wasserstein Discriminant Analysis (WDA) as a ratio trace problem and present an eigensolver-based algorithm to compute the discriminative subspace of WDA. This new formulation, along with the proposed algorithm, can be served as an efficient and more stable alternative to the original trace ratio formulation and its gradient-based algorithm. We provide a rigorous convergence analysis for the proposed algorithm under the self-consistent field framework, which is crucial but missing in the literature. As an application, we combine WDA with low-dimensional clustering techniques, such as K-means, to perform subspace clustering. Numerical experiments on real datasets show promising results of the ratio trace formulation of WDA in both classification and clustering tasks.
Unsupervised Learning from Noisy Networks with Applications to Hi-C Data
Wang, Bo, Zhu, Junjie, Pourshafeie, Armin, Ursu, Oana, Batzoglou, Serafim, Kundaje, Anshul
Complex networks play an important role in a plethora of disciplines in natural sciences. Cleaning up noisy observed networks, poses an important challenge in network analysis Existing methods utilize labeled data to alleviate the noise effect in the network. However, labeled data is usually expensive to collect while unlabeled data can be gathered cheaply. In this paper, we propose an optimization framework to mine useful structures from noisy networks in an unsupervised manner. The key feature of our optimization framework is its ability to utilize local structures as well as global patterns in the network. We extend our method to incorporate multi-resolution networks in order to add further resistance to high-levels of noise. We also generalize our framework to utilize partial labels to enhance the performance. We specifically focus our method on multi-resolution Hi-C data by recovering clusters of genomic regions that co-localize in 3D space. Additionally, we use Capture-C-generated partial labels to further denoise the Hi-C network. We empirically demonstrate the effectiveness of our framework in denoising the network and improving community detection results.
Unified Graph Augmentations for Generalized Contrastive Learning on Graphs
Zhuo, Jiaming, Lu, Yintong, Ning, Hui, Fu, Kun, niu, bingxin, He, Dongxiao, Wang, Chuan, Guo, Yuanfang, Wang, Zhen, Cao, Xiaochun, Yang, Liang
In real-world scenarios, networks (graphs) and their tasks possess unique characteristics, requiring the development of a versatile graph augmentation (GA) to meet the varied demands of network analysis. Unfortunately, most Graph Contrastive Learning (GCL) frameworks are hampered by the specificity, complexity, and incompleteness of their GA techniques. Firstly, GAs designed for specific scenarios may compromise the universality of models if mishandled. Secondly, the process of identifying and generating optimal augmentations generally involves substantial computational overhead. Thirdly, the effectiveness of the GCL, even the learnable ones, is constrained by the finite selection of GAs available. To overcome the above limitations, this paper introduces a novel unified GA module dubbed UGA after reinterpreting the mechanism of GAs in GCLs from a message-passing perspective. Theoretically, this module is capable of unifying any explicit GAs, including node, edge, attribute, and subgraph augmentations. Based on the proposed UGA, a novel generalized GCL framework dubbed Graph cOntrastive UnifieD Augmentations (GOUDA) is proposed. It seamlessly integrates widely adopted contrastive losses and an introduced independence loss to fulfill the common requirements of consistency and diversity of augmentation across diverse scenarios. Evaluations across various datasets and tasks demonstrate the generality and efficiency of the proposed GOUDA over existing state-of-the-art GCLs.
Off-policy estimation with adaptively collected data: the power of online learning
Lee, Jeonghwan, Ma, Cong
We consider estimation of a linear functional of the treatment effect from adaptively collected data. This problem finds a variety of applications including off-policy evaluation in contextual bandits, and estimation of the average treatment effect in causal inference. While a certain class of augmented inverse propensity weighting (AIPW) estimators enjoys desirable asymptotic properties including the semi-parametric efficiency, much less is known about their non-asymptotic theory with adaptively collected data. To fill in the gap, we first present generic upper bounds on the mean-squared error of the class of AIPW estimators that crucially depends on a sequentially weighted error between the treatment effect and its estimates. Motivated by this, we propose a general reduction scheme that allows one to produce a sequence of estimates for the treatment effect via online learning to minimize the sequentially weighted estimation error. To illustrate this, we provide three concrete instantiations in (1) the tabular case; (2) the case of linear function approximation; and (3) the case of general function approximation for the outcome model. We then provide a local minimax lower bound to show the instance-dependent optimality of the AIPW estimator using no-regret online learning algorithms.
Tight convex relaxations for sparse matrix factorization
Richard, Emile, Obozinski, Guillaume R., Vert, Jean-Philippe
Based on a new atomic norm, we propose a new convex formulation for sparse matrix factorization problems in which the number of nonzero elements of the factors is assumed fixed and known. The formulation counts sparse PCA with multiple factors, subspace clustering and low-rank sparse bilinear regression as potential applications. We compute slow rates and an upper bound on the statistical dimension of the suggested norm for rank 1 matrices, showing that its statistical dimension is an order of magnitude smaller than the usual l_1-norm, trace norm and their combinations. Even though our convex formulation is in theory hard and does not lead to provably polynomial time algorithmic schemes, we propose an active set algorithm leveraging the structure of the convex problem to solve it and show promising numerical results.
Variational Automatic Curriculum Learning for Sparse-Reward Cooperative Multi-Agent Problems
Chen, Jiayu, Zhang, Yuanxin, Xu, Yuanfan, Ma, Huimin, Yang, Huazhong, Song, Jiaming, Wang, Yu, Wu, Yi
We introduce an automatic curriculum algorithm, Variational Automatic Curriculum Learning (VACL), for solving challenging goal-conditioned cooperative multi-agent reinforcement learning problems. We motivate our curriculum learning paradigm through a variational perspective, where the learning objective can be decomposed into two terms: task learning on the current curriculum, and curriculum update to a new task distribution. Local optimization over the second term suggests that the curriculum should gradually expand the training tasks from easy to hard. Our VACL algorithm implements this variational paradigm with two practical components, task expansion and entity curriculum, which produces a series of training tasks over both the task configurations as well as the number of entities in the task. Experiment results show that VACL solves a collection of sparse-reward problems with a large number of agents. Particularly, using a single desktop machine, VACL achieves 98% coverage rate with 100 agents in the simple-spread benchmark and reproduces the ramp-use behavior originally shown in OpenAI’s hide-and-seek project.
An Information-Theoretic Analysis of In-Context Learning
Hong Jun Jeon, Jason Lee, Qi Lei, Benjamin Van Roy
Previous theoretical results pertaining to meta-learning on sequences build on contrived and convoluted mixing time assumptions. We introduce new information-theoretic tools that lead to a concise yet general decomposition of error for a Bayes optimal predictor into two components: meta-learning error and intra-task error. These tools unify analyses across many meta-learning challenges. To illustrate, we apply them to establish new results about in-context learning with transformers and corroborate existing results a simple linear setting. Our theoretical results characterize how error decays in both the number of training sequences and sequence lengths. Our results are very general; for example, they avoid contrived mixing time assumptions made by all prior results that establish decay of error with sequence length.
DFacTo: Distributed Factorization of Tensors
Choi, Joon Hee, Vishwanathan, S.
We present a technique for significantly speeding up Alternating Least Squares (ALS) and Gradient Descent (GD), two widely used algorithms for tensor factorization. By exploiting properties of the Khatri-Rao product, we show how to efficiently address a computationally challenging sub-step of both algorithms. Our algorithm, DFacTo, only requires two matrix-vector products and is easy to parallelize. DFacTo is not only scalable but also on average 4 to 10 times faster than competing algorithms on a variety of datasets. For instance, DFacTo only takes 480 seconds on 4 machines to perform one iteration of the ALS algorithm and 1,143 seconds to perform one iteration of the GD algorithm on a 6.5 million x 2.5 million x 1.5 million dimensional tensor with 1.2 billion non-zero entries.
Deep learning with COTS HPC systems
Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, Ng Andrew
Scaling up deep learning algorithms has been shown to lead to increased performance in benchmark tasks and to enable discovery of complex high-level features. Recent efforts to train extremely large networks (with over 1 billion parameters) have relied on cloud-like computing infrastructure and thousands of CPU cores. In this paper, we present technical details and results from our own system based on Commodity Off-The-Shelf High Performance Computing (COTS HPC) technology: a cluster of GPU servers with Infiniband interconnects and MPI. Our system is able to train 1 billion parameter networks on just 3 machines in a couple of days, and we show that it can scale to networks with over 11 billion parameters using just 16 machines. As this infrastructure is much more easily marshaled by others, the approach enables much wider-spread research with extremely large neural networks.
: Decentralized Training over Decentralized Data
Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, Ji Liu
While training a machine learning model using multiple workers, each of which collects data from its own data source, it would be useful when the data collected from different workers are
Why Non-myopic Bayesian Optimization is Promising and How Far Should We Look-ahead? A Study via Rollout
Xubo Yue, Raed AL Kontar
Lookahead, also known as non-myopic, Bayesian optimization (BO) aims to find optimal sampling policies through solving a dynamic programming (DP) formulation that maximizes a long-term reward over a rolling horizon. Though promising, lookahead BO faces the risk of error propagation through its increased dependence on a possibly mis-specified model. In this work we focus on the rollout approximation for solving the intractable DP. We first prove the improving nature of rollout in tackling lookahead BO and provide a sufficient condition for the used heuristic to be rollout improving. We then provide both a theoretical and practical guideline to decide on the rolling horizon stagewise. This guideline is built on quantifying the negative effect of a mis-specified model. To illustrate our idea, we provide case studies on both single and multi-information source BO. Empirical results show the advantageous properties of our method over several myopic and non-myopic BO algorithms.
Graph-enhanced Large Language Models in Asynchronous Plan Reasoning
Fangru Lin, Emanuele La Malfa, Valentin Hofmann, Elle Michelle Yang, Anthony Cohn, Janet Pierrehumbert
Planning is a fundamental property of human intelligence. Reasoning about asynchronous plans is challenging since it requires sequential and parallel planning to optimize time costs. Can large language models (LLMs) succeed at this task? Here, we present the first large-scale study investigating this question. We find that a representative set of closed and open-source LLMs, including GPT-4 and LLaMA-2, behave poorly when not supplied with illustrations about the task-solving process in our benchmark AsyncHow. We propose a novel technique called *Plan Like a Graph* (PLaG) that combines graphs with natural language prompts and achieves state-of-the-art results. We show that although PLaG can boost model performance, LLMs still suffer from drastic degradation when task complexity increases, highlighting the limits of utilizing LLMs for simulating digital devices. We see our study as an exciting step towards using LLMs as efficient autonomous agents. Our code and data are available at https://github.com/fangru-lin/graph-llm-asynchow-plan.
A Concept-Based Explainability Framework for Large Multimodal Models
Parekh, Jayneel, KHAYATAN, Pegah, Shukor, Mustafa, Newson, Alasdair, Cord, Matthieu
Large multimodal models (LMMs) combine unimodal encoders and large language models (LLMs) to perform multimodal tasks. Despite recent advancements towards the interpretability of these models, understanding internal representations of LMMs remains largely a mystery. In this paper, we present a novel framework for the interpretation of LMMs. We propose a dictionary learning based approach, applied to the representation of tokens. The elements of the learned dictionary correspond to our proposed concepts. We show that these concepts are well semantically grounded in both vision and text. Thus we refer to these as ``multi-modal concepts''. We qualitatively and quantitatively evaluate the results of the learnt concepts. We show that the extracted multimodal concepts are useful to interpret representations of test samples. Finally, we evaluate the disentanglement between different concepts and the quality of grounding concepts visually and textually. Our implementation is publicly available: https://github.com/mshukor/xl-vlms.
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation
Li, Junnan, Selvaraju, Ramprasaath, Gotmare, Akhilesh, Joty, Shafiq, Xiong, Caiming, Hoi, Steven Chu Hong
Large-scale vision and language representation learning has shown promising improvements on various vision-language tasks. Most existing methods employ a transformer-based multimodal encoder to jointly model visual tokens (region-based image features) and word tokens. Because the visual tokens and word tokens are unaligned, it is challenging for the multimodal encoder to learn image-text interactions. In this paper, we introduce a contrastive loss to ALign the image and text representations BEfore Fusing (ALBEF) them through cross-modal attention, which enables more grounded vision and language representation learning. Unlike most existing methods, our method does not require bounding box annotations nor high-resolution images. In order to improve learning from noisy web data, we propose momentum distillation, a self-training method which learns from pseudo-targets produced by a momentum model. We provide a theoretical analysis of ALBEF from a mutual information maximization perspective, showing that different training tasks can be interpreted as different ways to generate views for an image-text pair. ALBEF achieves state-of-the-art performance on multiple downstream vision-language tasks. On image-text retrieval, ALBEF outperforms methods that are pre-trained on orders of magnitude larger datasets. On VQA and NLVR, ALBEF achieves absolute improvements of 2.37% and 3.84% compared to the state-of-the-art, while enjoying faster inference speed. Code and models are available at https://github.com/salesforce/ALBEF.
Feature relevance quantification in explainable AI: A causal problem
Dominik Janzing, Lenon Minorics, Patrick Bloebaum
We discuss promising recent contributions on quantifying feature relevance using Shapley values, where we observed some confusion on which probability distribution is the right one for dropped features. We argue that the confusion is based on not carefully distinguishing between observational and interventional conditional probabilities and try a clarification based on Pearl’s seminal work on causality. We conclude that unconditional rather than conditional expectations provide the right notion of dropping features. This contradicts the view of the authors of the software package SHAP. In that work, unconditional expectations (which we argue to be conceptually right) are only used as approximation for the conditional ones, which encouraged others to ’improve’ SHAP in a way that we believe to be flawed.
What type of inference is planning?
Lazaro-Gredilla, Miguel, Ku, Li, Murphy, Kevin P., George, Dileep
Multiple types of inference are available for probabilistic graphical models, e.g., marginal, maximum-a-posteriori, and even marginal maximum-a-posteriori. Which one do researchers mean when they talk about ``planning as inference''? There is no consistency in the literature, different types are used, and their ability to do planning is further entangled with specific approximations or additional constraints. In this work we use the variational framework to show that, just like all commonly used types of inference correspond to different weightings of the entropy terms in the variational problem, planning corresponds exactly to a different set of weights. This means that all the tricks of variational inference are readily applicable to planning. We develop an analogue of loopy belief propagation that allows us to perform approximate planning in factored-state Markov decisions processes without incurring intractability due to the exponentially large state space. The variational perspective shows that the previous types of inference for planning are only adequate in environments with low stochasticity, and allows us to characterize each type by its own merits, disentangling the type of inference from the additional approximations that its practical use requires. We validate these results empirically on synthetic MDPs and tasks posed in the International Planning Competition.
Active representation learning for general task space with applications in robotics
Chen, Yifang, Huang, Yingbing, Du, Simon S., Jamieson, Kevin G., Shi, Guanya
Representation learning based on multi-task pretraining has become a powerful approach in many domains. In particular, task-aware representation learning aims to learn an optimal representation for a specific target task by sampling data from a set of source tasks, while task-agnostic representation learning seeks to learn a universal representation for a class of tasks. In this paper, we propose a general and versatile algorithmic and theoretic framework for \emph{active representation learning}, where the learner optimally chooses which source tasks to sample from. This framework, along with a tractable meta algorithm, allows most arbitrary target and source task spaces (from discrete to continuous), covers both task-aware and task-agnostic settings, and is compatible with deep representation learning practices. We provide several instantiations under this framework, from bilinear and feature-based nonlinear to general nonlinear cases. In the bilinear case, by leveraging the non-uniform spectrum of the task representation and the calibrated source-target relevance, we prove that the sample complexity to achieve -excess risk on target scales with where is the effective dimension of the target and represents the connection between source and target space. Compared to the passive one, this can save up to of sample complexity, where is the task space dimension. Finally, we demonstrate different instantiations of our meta algorithm in synthetic datasets and robotics problems, from pendulum simulations to real-world drone flight datasets. On average, our algorithms outperform baselines by 20%-70%.
DiffGS: Functional Gaussian Splatting Diffusion
Zhou, Junsheng, Zhang, Weiqi, Liu, Yu-Shen
3D Gaussian Splatting (3DGS) has shown convincing performance in rendering speed and fidelity, yet the generation of Gaussian Splatting remains a challenge due to its discreteness and unstructured nature. In this work, we propose DiffGS, a general Gaussian generator based on latent diffusion models. DiffGS is a powerful and efficient 3D generative model which is capable of generating Gaussian primitives at arbitrary numbers for high-fidelity rendering with rasterization. The key insight is to represent Gaussian Splatting in a disentangled manner via three novel functions to model Gaussian probabilities, colors and transforms. Through the novel disentanglement of 3DGS, we represent the discrete and unstructured 3DGS with continuous Gaussian Splatting functions, where we then train a latent diffusion model with the target of generating these Gaussian Splatting functions both unconditionally and conditionally. Meanwhile, we introduce a discretization algorithm to extract Gaussians at arbitrary numbers from the generated functions via octree-guided sampling and optimization. We explore DiffGS for various tasks, including unconditional generation, conditional generation from text, image, and partial 3DGS, as well as Point-to-Gaussian generation. We believe that DiffGS provides a new direction for flexibly modeling and generating Gaussian Splatting. Project page: https://junshengzhou.github.io/DiffGS.
Variational Model Inversion Attacks
Wang, Kuan-Chieh, FU, YAN, Li, Ke, Khisti, Ashish, Zemel, Richard, Makhzani, Alireza
Given the ubiquity of deep neural networks, it is important that these models do not reveal information about sensitive data that they have been trained on. In model inversion attacks, a malicious user attempts to recover the private dataset used to train a supervised neural network. A successful model inversion attack should generate realistic and diverse samples that accurately describe each of the classes in the private dataset. In this work, we provide a probabilistic interpretation of model inversion attacks, and formulate a variational objective that accounts for both diversity and accuracy. In order to optimize this variational objective, we choose a variational family defined in the code space of a deep generative model, trained on a public auxiliary dataset that shares some structural similarity with the target dataset. Empirically, our method substantially improves performance in terms of target attack accuracy, sample realism, and diversity on datasets of faces and chest X-ray images.
Active learning of neural population dynamics using two-photon holographic optogenetics
Wagenmaker, Andrew, Mi, Lu, Rozsa, Marton, Bull, Matthew, Svoboda, Karel, Daie, Kayvon, Golub, Matthew, Jamieson, Kevin G.
Recent advances in techniques for monitoring and perturbing neural populations have greatly enhanced our ability to study circuits in the brain. In particular, two-photon holographic optogenetics now enables precise photostimulation of experimenter-specified groups of individual neurons, while simultaneous two-photon calcium imaging enables the measurement of ongoing and induced activity across the neural population. Despite the enormous space of potential photostimulation patterns and the time-consuming nature of photostimulation experiments, very little algorithmic work has been done to determine the most effective photostimulation patterns for identifying the neural population dynamics. Here, we develop methods to efficiently select which neurons to stimulate such that the resulting neural responses will best inform a dynamical model of the neural population activity. Using neural population responses to photostimulation in mouse motor cortex, we demonstrate the efficacy of a low-rank linear dynamical systems model, and develop an active learning procedure which takes advantage of low-rank structure to determine informative photostimulation patterns. We demonstrate our approach on both real and synthetic data, obtaining in some cases as much as a two-fold reduction in the amount of data required to reach a given predictive power. Our active stimulation design method is based on a novel active learning procedure for low-rank regression, which may be of independent interest.
Graph Neural Networks with Adaptive Residual
Liu, Xiaorui, Ding, Jiayuan, Jin, Wei, Xu, Han, Ma, Yao, Liu, Zitao, Tang, Jiliang
Graph neural networks (GNNs) have shown the power in graph representation learning for numerous tasks. In this work, we discover an interesting phenomenon that although residual connections in the message passing of GNNs help improve the performance, they immensely amplify GNNs' vulnerability against abnormal node features. This is undesirable because in real-world applications, node features in graphs could often be abnormal such as being naturally noisy or adversarially manipulated. We analyze possible reasons to understand this phenomenon and aim to design GNNs with stronger resilience to abnormal features. Our understandings motivate us to propose and derive a simple, efficient, interpretable, and adaptive message passing scheme, leading to a novel GNN with Adaptive Residual, AirGNN. Extensive experiments under various abnormal feature scenarios demonstrate the effectiveness of the proposed algorithm.
Robustness of Deep Learning for Accelerated MRI: Benefits of Diverse Training Data
Kang Lin, Reinhard Heckel
Deep learning based methods for image reconstruction are state-of-the-art for a variety of imaging tasks. However, neural networks often perform worse if the training data differs significantly from the data they are applied to. For example, a model trained for accelerated magnetic resonance imaging (MRI) on one scanner performs worse on another scanner. In this work, we investigate the impact of the training data on a model's performance and robustness for accelerated MRI. We find that models trained on the combination of various data distributions, such as those obtained from different MRI scanners and anatomies, exhibit robustness equal or superior to models trained on the best single distribution for a specific target distribution. Thus training on such diverse data tends to improve robustness. Furthermore, training on such a diverse dataset does not compromise in-distribution performance, i.e., a model trained on diverse data yields in-distribution performance at least as good as models trained on the more narrow individual distributions. Our results suggest that training a model for imaging on a variety of distributions tends to yield a more effective and robust model than maintaining separate models for individual distributions.
Passive Learning with Target Risk
Mehrdad Mahdavi, Rong Jin
In this paper we consider learning in passive setting but with a slight modification. We assume that the target expected loss, also referred to as target risk, is provided in advance for learner as prior knowledge. Unlike most studies in the learning theory that only incorporate the prior knowledge into the generalization bounds, we are able to explicitly utilize the target risk in the learning process. Our analysis reveals a surprising result on the sample complexity of learning: by exploiting the target risk in the learning algorithm, we show that when the loss function is both strongly convex and smooth, the sample complexity reduces to \mathcalO(\log \left(\frac1ε\right)), an exponential improvement compared to the sample complexity \mathcalO(\frac1ε) for learning with strongly convex loss functions. Furthermore, our proof is constructive and is based on a computationally efficient stochastic optimization algorithm for such settings which demonstrate that the proposed algorithm is practically useful.
Unsupervised Anomaly Detection with Rejection
Perini, Lorenzo, Davis, Jesse
Anomaly detection aims at detecting unexpected behaviours in the data. Because anomaly detection is usually an unsupervised task, traditional anomaly detectors learn a decision boundary by employing heuristics based on intuitions, which are hard to verify in practice. This introduces some uncertainty, especially close to the decision boundary, that may reduce the user trust in the detector's predictions. A way to combat this is by allowing the detector to reject predictions with high uncertainty (Learning to Reject). This requires employing a confidence metric that captures the distance to the decision boundary and setting a rejection threshold to reject low-confidence predictions. However, selecting a proper metric and setting the rejection threshold without labels are challenging tasks. In this paper, we solve these challenges by setting a constant rejection threshold on the stability metric computed by ExCeeD. Our insight relies on a theoretical analysis of such a metric. Moreover, setting a constant threshold results in strong guarantees: we estimate the test rejection rate, and derive a theoretical upper bound for both the rejection rate and the expected prediction cost. Experimentally, we show that our method outperforms some metric-based methods.
ActionAtlas: A VideoQA Benchmark for Domain-specialized Action Recognition
Salehi, Mohammadreza (Reza), Park, Jae Sung, Kusupati, Aditya, Krishna, Ranjay, Choi, Yejin, Hajishirzi, Hanna, Farhadi, Ali
Our world is full of varied actions and moves in specialized fields that we, as humans, seek to identify and learn about. To evaluate the effectiveness of multi-modal models in helping us recognize such fine-grained actions, we introduce ActionAtlas, a video question answering (VideoQA) benchmark on fine-grained action recognition with short videos across various sports. ActionAtlas contains 554 videos spanning 284 actions across 42 sports with 1161 actions as total potential choices. Unlike most existing action recognition benchmarks that focus on simplistic actions, often identifiable from a single frame, ActionAtlas focuses on intricate movements and tests the models' ability to discern subtle differences. Additionally, each video in ActionAtlas also includes a question, which helps to more accurately pinpoint the action's performer in scenarios where multiple individuals are involved in different activities. We evaluate proprietary and open models on this benchmark and show that the state-of-the-art models only perform at most 48.73% accurately where random chance is 20%. Furthermore, our results show that a high frame sampling rate is essential for recognizing actions in ActionAtlas, a feature that current top proprietary models like Gemini lack in their default settings.
Efficient Active Learning for Gaussian Process Classification by Error Reduction
Zhao, Guang, Dougherty, Edward, Yoon, Byung-Jun, Alexander, Francis, Qian, Xiaoning
Active learning sequentially selects the best instance for labeling by optimizing an acquisition function to enhance data/label efficiency. The selection can be either from a discrete instance set (pool-based scenario) or a continuous instance space (query synthesis scenario). In this work, we study both active learning scenarios for Gaussian Process Classification (GPC). The existing active learning strategies that maximize the Estimated Error Reduction (EER) aim at reducing the classification error after training with the new acquired instance in a one-step-look-ahead manner. The computation of EER-based acquisition functions is typically prohibitive as it requires retraining the GPC with every new query. Moreover, as the EER is not smooth, it can not be combined with gradient-based optimization techniques to efficiently explore the continuous instance space for query synthesis. To overcome these critical limitations, we develop computationally efficient algorithms for EER-based active learning with GPC. We derive the joint predictive distribution of label pairs as a one-dimensional integral, as a result of which the computation of the acquisition function avoids retraining the GPC for each query, remarkably reducing the computational overhead. We also derive the gradient chain rule to efficiently calculate the gradient of the acquisition function, which leads to the first query synthesis active learning algorithm implementing EER-based strategies. Our experiments clearly demonstrate the computational efficiency of the proposed algorithms. We also benchmark our algorithms on both synthetic and real-world datasets, which show superior performance in terms of sampling efficiency compared to the existing state-of-the-art algorithms.
Delegating Data Collection in Decentralized Machine Learning
Nivasini Ananthakrishnan, Stephen Bates, Michael Jordan, Nika Haghtalab
Motivated by the emergence of decentralized machine learning (ML) ecosystems, we study the delegation of data collection. Taking the field of contract theory as our starting point, we design optimal and near-optimal contracts that deal with two fundamental information asymmetries that arise in decentralized ML: uncertainty in the assessment of model quality and uncertainty regarding the optimal performance of any model. We show that a principal can cope with such asymmetry via simple linear contracts that achieve fraction of the optimal utility. To address the lack of a priori knowledge regarding the optimal performance, we give a convex program that can adaptively and efficiently compute the optimal contract. We also analyze the optimal utility and linear contracts for the more complex setting of multiple interactions.
Online Optimization with Gradual Variations
Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, Shenghuo Zhu
We study the online convex optimization problem, in which an online algorithm has to make repeated decisions with convex loss functions and hopes to achieve a small regret. We consider a natural restriction of this problem in which the loss functions have a small deviation, measured by the sum of the distances between every two consecutive loss functions, according to some distance metrics. We show that for the linear and general smooth convex loss functions, an online algorithm modified from the gradient descend algorithm can achieve a regret which only scales as the square root of the deviation. For the closely related problem of prediction with expert advice, we show that an online algorithm modified from the multiplicative update algorithm can also achieve a similar regret bound for a different measure of deviation. Finally, for loss functions which are strictly convex, we show that an online algorithm modified from the online Newton step algorithm can achieve a regret which is only logarithmic in terms of the deviation, and as an application, we can also have such a logarithmic regret for the portfolio management problem.
Reasons and Solutions for the Decline in Model Performance after Editing
Huang, Xiusheng, Liu, Jiaxiang, Wang, Yequan, Liu, Kang
Knowledge editing technology has received widespread attention for low-cost updates of incorrect or outdated knowledge in large-scale language models. However, recent research has found that edited models often exhibit varying degrees of performance degradation. The reasons behind this phenomenon and potential solutions have not yet been provided. In order to investigate the reasons for the performance decline of the edited model and optimize the editing method, this work explores the underlying reasons from both data and model perspectives. Specifically, 1) from a data perspective, to clarify the impact of data on the performance of editing models, this paper first constructs a Multi-Question Dataset (MQD) to evaluate the impact of different types of editing data on model performance. The performance of the editing model is mainly affected by the diversity of editing targets and sequence length, as determined through experiments. 2) From a model perspective, this article explores the factors that affect the performance of editing models. The results indicate a strong correlation between the L1-norm of the editing model layer and the editing accuracy, and clarify that this is an important factor leading to the bottleneck of editing performance. Finally, in order to improve the performance of the editing model, this paper further proposes a Dump for Sequence (D4S) method, which successfully overcomes the previous editing bottleneck by reducing the L1-norm of the editing layer, allowing users to perform multiple effective edits and minimizing model damage. Our code is available at https://github.com/nlpkeg/D4S.
A Practitioner's Guide to Real-World Continual Multimodal Pretraining
Udandarao, Vishaal, Roth, Karsten, Dziadzio, Sebastian, Prabhu, Ameya, Cherti, Mehdi, Vinyals, Oriol, Henaff, Olivier, Albanie, Samuel, Akata, Zeynep, Bethge, Matthias
Multimodal foundation models serve numerous applications at the intersection of vision and language. Still, despite being pretrained on extensive data, they become outdated over time.To keep models updated, research into continual pretraining mainly explores scenarios with either (1) infrequent, indiscriminate updates on large-scale new data, or (2) frequent, sample-level updates.However, practical model deployment often operates in the gap between these two limit cases, as real-world applications demand adaptation to specific subdomains, tasks or concepts --- spread over the entire, varying life cycle of a model. In this work, we complement current perspectives on continual pretraining through a research test bed and offer comprehensive guidance for effective continual model updates in such scenarios.We first introduce FoMo-in-Flux, a continual multimodal pretraining benchmark with realistic compute constraints and practical deployment requirements, constructed over 63 datasets with diverse visual and semantic coverage.Using FoMo-in-Flux, we explore the complex landscape of practical continual pretraining through multiple perspectives: (1) data mixtures and stream orderings that emulate real-world deployment settings, (2) methods ranging from simple fine-tuning and traditional continual learning strategies to parameter-efficient updates and model merging, (3) meta-learning-rate schedules and mechanistic design choices, and (4) model and compute scaling. Together, our insights provide a practitioner's guide to continual multimodal pretraining for real-world deployment. Benchmark and code is provided here: https://github.com/ExplainableML/fomoinflux.
Contrastive Learning with Adversarial Examples
Ho, Chih-Hui, Nvasconcelos, Nuno
Contrastive learning (CL) is a popular technique for self-supervised learning (SSL) of visual representations. It uses pairs of augmentations of unlabeled training examples to define a classification task for pretext learning of a deep embedding. Despite extensive works in augmentation procedures, prior works do not address the selection of challenging negative pairs, as images within a sampled batch are treated independently. This paper addresses the problem, by introducing a new family of adversarial examples for constrastive learning and using these examples to define a new adversarial training algorithm for SSL, denoted as CLAE. When compared to standard CL, the use of adversarial examples creates more challenging positive pairs and adversarial training produces harder negative pairs by accounting for all images in a batch during the optimization. CLAE is compatible with many CL methods in the literature. Experiments show that it improves the performance of several existing CL baselines on multiple datasets.
One-Sided Unsupervised Domain Mapping
Benaim, Sagie, Wolf, Lior
In unsupervised domain mapping, the learner is given two unmatched datasets and . The goal is to learn a mapping that translates a sample in to the analog sample in . Recent approaches have shown that when learning simultaneously both and the inverse mapping , convincing mappings are obtained. In this work, we present a method of learning without learning . This is done by learning a mapping that maintains the distance between a pair of samples. Moreover, good mappings are obtained, even by maintaining the distance between different parts of the same sample before and after mapping. We present experimental results that the new method not only allows for one sided mapping learning, but also leads to preferable numerical results over the existing circularity-based constraint. Our entire code is made publicly available at~\url{https://github.com/sagiebenaim/DistanceGAN}.
PureGen: Universal Data Purification for Train-Time Poison Defense via Generative Model Dynamics
Pooladzandi, Omead, Bhat, Sunay, Jiang, Jeffrey, Branch, Alexander, Pottie, Gregory
Train-time data poisoning attacks threaten machine learning models by introducing adversarial examples during training, leading to misclassification. Current defense methods often reduce generalization performance, are attack-specific, and impose significant training overhead. To address this, we introduce a set of universal data purification methods using a stochastic transform, , realized via iterative Langevin dynamics of Energy-Based Models (EBMs), Denoising Diffusion Probabilistic Models (DDPMs), or both. These approaches purify poisoned data with minimal impact on classifier generalization. Our specially trained EBMs and DDPMs provide state-of-the-art defense against various attacks (including Narcissus, Bullseye Polytope, Gradient Matching) on CIFAR-10, Tiny-ImageNet, and CINIC-10, without needing attack or classifier-specific information. We discuss performance trade-offs and show that our methods remain highly effective even with poisoned or distributionally shifted generative model training data.
Online Algorithms with Uncertainty-Quantified Predictions
Bo Sun, Jerry Huang, Nicolas Christianson, Mohammad Hajiesmaili, Adam Wierman, Raouf Boutaba
The burgeoning field of algorithms with predictions studies the problem of using possibly imperfect machine learning predictions to improve online algorithm performance. While nearly all existing algorithms in this framework make no assumptions on prediction quality, a number of methods providing uncertainty quantification (UQ) on machine learning models have been developed in recent years, which could enable additional information about prediction quality at decision time. In this work, we investigate the problem of optimally utilizing uncertainty-quantified predictions in the design of online algorithms. In particular, we study two classic online problems, ski rental and online search, where the decision-maker is provided predictions augmented with UQ describing the likelihood of the ground truth falling within a particular range of values. We demonstrate that non-trivial modifications to algorithm design are needed to fully leverage the UQ predictions. Moreover, we consider how to utilize more general forms of UQ, proposing an online learning framework that learns to exploit UQ to make decisions in multi-instance settings.
Efficient Sketches for Training Data Attribution and Studying the Loss Landscape
Schioppa, Andrea
The study of modern machine learning models often necessitates storing vast quantities of gradients or Hessian vector products (HVPs). Traditional sketching methods struggle to scale under these memory constraints. We present a novel framework for scalable gradient and HVP sketching, tailored for modern hardware. We provide theoretical guarantees and demonstrate the power of our methods in applications like training data attribution, Hessian spectrum analysis, and intrinsic dimension computation for pre-trained language models. Our work sheds new light on the behavior of pre-trained language models, challenging assumptions about their intrinsic dimensionality and Hessian properties.
Non-Asymptotic Analysis for Two Time-scale TDC with General Smooth Function Approximation
Wang, Yue, Zou, Shaofeng, Zhou, Yi
Temporal-difference learning with gradient correction (TDC) is a two time-scale algorithm for policy evaluation in reinforcement learning. This algorithm was initially proposed with linear function approximation, and was later extended to the one with general smooth function approximation. The asymptotic convergence for the on-policy setting with general smooth function approximation was established in [Bhatnagar et al., 2009], however, the non-asymptotic convergence analysis remains unsolved due to challenges in the non-linear and two-time-scale update structure, non-convex objective function and the projection onto a time-varying tangent plane. In this paper, we develop novel techniques to address the above challenges and explicitly characterize the non-asymptotic error bound for the general off-policy setting with i.i.d. or Markovian samples, and show that it converges as fast as (up to a factor of ). Our approach can be applied to a wide range of value-based reinforcement learning algorithms with general smooth function approximation.
Learning to Localize Using a LiDAR Intensity Map
Ioan Andrei Barsan, Shenlong Wang, Andrei Pokrovsky, Raquel Urtasun
In this paper we propose a real-time, calibration-agnostic and effective localization system for self-driving cars. Our method learns to embed the online LiDAR sweeps and intensity map into a joint deep embedding space. Localization is then conducted through an efficient convolutional matching between the embeddings. Our full system can operate in real-time at 15Hz while achieving centimeter level accuracy across different LiDAR sensors and environments. Our experiments illustrate the performance of the proposed approach over a large-scale dataset consisting of over 4000km of driving.
Efficient Temporal Action Segmentation via Boundary-aware Query Voting
Wang, Peiyao, Lin, Yuewei, Blasch, Erik, wei, jie, Ling, Haibin
Although the performance of Temporal Action Segmentation (TAS) has been improved in recent years, achieving promising results often comes with a high computational cost due to dense inputs, complex model structures, and resource-intensive post-processing requirements. To improve the efficiency while keeping the high performance, we present a novel perspective centered on per-segment classification. By harnessing the capabilities of Transformers, we tokenize each video segment as an instance token, endowed with intrinsic instance segmentation. To realize efficient action segmentation, we introduce BaFormer, a boundary-aware Transformer network. It employs instance queries for instance segmentation and a global query for class-agnostic boundary prediction, yielding continuous segment proposals. During inference, BaFormer employs a simple yet effective voting strategy to classify boundary-wise segments based on instance segmentation. Remarkably, as a single-stage approach, BaFormer significantly reduces the computational costs, utilizing only 6% of the running time compared to the state-of-the-art method DiffAct, while producing better or comparable accuracy over several popular benchmarks. The code for this project is publicly available at https://github.com/peiyao-w/BaFormer.
LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering
Li Sun, Zhenhao Huang, Hao Peng, YuJie Wang, Chunyang Liu, Philip Yu
Graph clustering is a fundamental problem in machine learning. Deep learning methods achieve the state-of-the-art results in recent years, but they still cannot work without predefined cluster numbers. Such limitation motivates us to pose a more challenging problem of graph clustering with unknown cluster number. We propose to address this problem from a fresh perspective of graph information theory (i.e., structural information). In the literature, structural information has not yet been introduced to deep clustering, and its classic definition falls short of discrete formulation and modeling node features. In this work, we first formulate a differentiable structural information (DSI) in the continuous realm, accompanied by several theoretical results. By minimizing DSI, we construct the optimal partitioning tree where densely connected nodes in the graph tend to have the same assignment, revealing the cluster struc- ture. DSI is also theoretically presented as a new graph clustering objective, not requiring the pre-defined cluster number. Furthermore, we design a neural LSEnet in the Lorentz model of hyperbolic space, where we integrate node features to structural information via manifold-valued graph convolution. Extensive empirical results on real graphs show the superiority of our approach.
Asymptotics of smoothed Wasserstein distances in the small noise regime
Ding, Yunzi, Niles-Weed, Jonathan
We study the behavior of the Wasserstein- distance between discrete measures and in when both measures are smoothed by small amounts of Gaussian noise. This procedure, known as Gaussian-smoothed optimal transport, has recently attracted attention as a statistically attractive alternative to the unregularized Wasserstein distance. We give precise bounds on the approximation properties of this proposal in the small noise regime, and establish the existence of a phase transition: we show that, if the optimal transport plan from to is unique and a perfect matching, there exists a critical threshold such that the difference between and the Gaussian-smoothed OT distance scales like for below the threshold, and scales like above it. These results establish that for sufficiently small, the smoothed Wasserstein distance approximates the unregularized distance exponentially well.
How does a Neural Network's Architecture Impact its Robustness to Noisy Labels?
Li, Jingling, Zhang, Mozhi, Xu, Keyulu, Dickerson, John, Ba, Jimmy
Noisy labels are inevitable in large real-world datasets. In this work, we explore an area understudied by previous works --- how the network's architecture impacts its robustness to noisy labels. We provide a formal framework connecting the robustness of a network to the alignments between its architecture and target/noise functions. Our framework measures a network's robustness via the predictive power in its representations --- the test performance of a linear model trained on the learned representations using a small set of clean labels. We hypothesize that a network is more robust to noisy labels if its architecture is more aligned with the target function than the noise. To support our hypothesis, we provide both theoretical and empirical evidence across various neural network architectures and different domains. We also find that when the network is well-aligned with the target function, its predictive power in representations could improve upon state-of-the-art (SOTA) noisy-label-training methods in terms of test accuracy and even outperform sophisticated methods that use clean labels.
Entropic Gromov-Wasserstein between Gaussian Distributions
Khang Le, Dung Le, Huy Nguyen, , Tung Pham, Nhat Ho
We study the entropic Gromov-Wasserstein and its unbalanced version between (unbalanced) Gaussian distributions with different dimensions. When the metric is the inner product, which we refer to as inner product Gromov-Wasserstein (IGW), we demonstrate that the optimal transportation plans of entropic IGW and its unbalanced variant are (unbalanced) Gaussian distributions. Via an application of von Neumann's trace inequality, we obtain closed-form expressions for the entropic IGW between these Gaussian distributions. Finally, we consider an entropic inner product Gromov-Wasserstein barycenter of multiple Gaussian distributions. We prove that the barycenter is a Gaussian distribution when the entropic regularization parameter is small. We further derive a closed-form expression for the covariance matrix of the barycenter.
DenseFormer: Enhancing Information Flow in Transformers via Depth Weighted Averaging
Pagliardini, Matteo, Mohtashami, Amirkeivan, Fleuret, François, Jaggi, Martin
The transformer architecture by Vaswani et al. (2017) is now ubiquitous across application domains, from natural language processing to speech processing and image understanding. We propose DenseFormer, a simple modification to the standard architecture that improves the perplexity of the model without increasing its size---adding a few thousand parameters for large-scale models in the 100B parameters range. Our approach relies on an additional averaging step after each transformer block, which computes a weighted average of current and past representations---we refer to this operation as Depth-Weighted-Average (DWA). The learned DWA weights exhibit coherent patterns of information flow, revealing the strong and structured reuse of activations from distant layers. Experiments demonstrate that DenseFormer is more data efficient, reaching the same perplexity of much deeper transformer models, and that for the same perplexity, these new models outperform transformer baselines in terms of memory efficiency and inference time.